Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.06.483172

ABSTRACT

New therapeutic targets are a valuable resource in the struggle to reduce the morbidity and mortality associated with the COVID-19 pandemic, caused by the SARS-CoV-2 virus. Genome-wide association studies (GWAS) have identified risk loci, but some loci are associated with co-morbidities and are not specific to host-virus interactions. Here, we identify and experimentally validate a link between reduced expression of EXOSC2 and reduced SARS-CoV-2 replication. EXOSC2 was one of 332 host proteins examined, all of which interact directly with SARS-CoV-2 proteins; EXOSC2 interacts with Nsp8 which forms part of the viral RNA polymerase. Lung-specific eQTLs were identified from GTEx (v7) for each of the 332 host proteins. Aggregating COVID-19 GWAS statistics for gene-specific eQTLs revealed an association between increased expression of EXOSC2 and higher risk of clinical COVID-19 which survived stringent multiple testing correction. EXOSC2 is a component of the RNA exosome and indeed, LC-MS/MS analysis of protein pulldowns demonstrated an interaction between the SARS-CoV-2 RNA polymerase and the majority of human RNA exosome components. CRISPR/Cas9 introduction of nonsense mutations within EXOSC2 in Calu-3 cells reduced EXOSC2 protein expression, impeded SARS-CoV-2 replication and upregulated oligoadenylate synthase (OAS) genes, which have been linked to a successful immune response against SARS-CoV-2. Reduced EXOSC2 expression did not reduce cellular viability. OAS gene expression changes occurred independent of infection and in the absence of significant upregulation of other interferon-stimulated genes (ISGs). Targeted depletion or functional inhibition of EXOSC2 may be a safe and effective strategy to protect at-risk individuals against clinical COVID-19.


Subject(s)
Genomic Instability , Citrullinemia , COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.13.20060467

ABSTRACT

BackgroundThe progression and geographical distribution of SARS coronavirus 2 (SARS-CoV-2) infection in the UK and elsewhere is unknown because typically only symptomatic individuals are diagnosed. We performed a serological study of blood donors in Scotland between the 17th of March and the 18th of May to detect neutralising antibodies to SARS-CoV-2 as a marker of past infection and epidemic progression. AimTo determine if sera from blood bank donors can be used to track the emergence and progression of the SARS-CoV-2 epidemic. MethodsA pseudotyped SARS-CoV-2 virus microneutralisation assay was used to detect neutralising antibodies to SARS-CoV-2. The study group comprised samples from 3,500 blood donors collected in Scotland between the 17th of March and 19th of May, 2020. Controls were collected from 100 donors in Scotland during 2019. ResultsAll samples collected on the 17th March, 2020 (n=500) were negative in the pseudotyped SARS-CoV-2 virus microneutralisation assay. Neutralising antibodies were detected in 6/500 donors from the 23th-26th of March. The number of samples containing neutralising antibodies did not significantly rise after the 5th-6th April until the end of the study on the 18th of May. We find that infections are concentrated in certain postcodes indicating that outbreaks of infection are extremely localised. In contrast, other areas remain comparatively untouched by the epidemic. ConclusionThese data indicate that sero-surveys of blood banks can serve as a useful tool for tracking the emergence and progression of an epidemic like the current SARS-CoV-2 outbreak.

SELECTION OF CITATIONS
SEARCH DETAIL